张靖 副教授

自动化系控制理论与技术研究所
清华信息科学与技术国家实验室量子信息科学与技术中心

通信地址:北京市海淀区清华大学自动化系 邮政编码:100084
电话:010-62797485 Fax:010-62797485

教育背景

1997年9月至2001年7月 在清华大学数学科学系应用数学专业学习,获理学学士学位;

2001年9月至2006年7月 在清华大学自动化系控制科学与工程专业学习,获工学博士学位

工作履历

2006年7月至2008年5月 清华大学计算机科学与技术系,博士后
2008年5月至2010年12月 清华大学自动化系,讲师
2010年12月至今 清华大学自动化系,副教授
2008年2月至3月 2008年7月至2009年2月,日本理化学研究所(RIKEN),访问学者
2010年4月至2010年7月 台湾成功大学,访问学者

学术兼职

担任国际期刊IEEE Transactions on Automatic Control,Automatica,Physica A审稿人,国内期刊为科学通报,Frontiers of Electrical and Electronic Engineering in China,Frontiers of Physics in China,系统科学与数学,控制理论与应用,中国科学院研究生院学报等期刊审稿人;

曾为国际会议Control and Decision Conference 2007, 2008,European Control Conference 2007,International Conference on Quantum, Nano and Micro Technologies 2008担任审稿人。

研究领域

光机械系统中的信息处理与控制理论与实验;

基于微光学腔的硅基微纳光子学实验;

超导电路中的量子信息处理与控制理论;

量子测量与量子反馈控制理论。

研究概况

1.国家自然科学基金优秀青年科学基金(61622306),“量子与微纳系统控制”,课题负责人,2017.1-2019.12

2.国家自然科学基金面上项目(11674194),“微型环芯腔系统中的光机械非线性效应及其应用研究”,课题负责人,2017.1-2019.12

3.国家自然科学基金面上项目(61174084),“超导电路中的非线性量子反馈控制网络及应用研究”,课题负责人,2012.1-2015.12

4.清华大学自主创新项目基础研究专项,“芯片上的量子反馈控制研究”,课题负责人,2013.10-2016.9

5.清华信息科学与技术国家实验室(筹)学科交叉基金,“硅芯片上微腔及光机械系统中的信息传输与控制”,课题负责人,2014.1-2015.12

6.国家自然科学基金青年基金项目(60704017),“用经典装置测控量子系统的混合控制系统研究”,课题负责人2008.1-2010.12

7.机器人学国家重点实验室开放课题,“基于石墨烯的可控纳米加工研究”,课题负责人,2012.1-2013.12

8.973量子调控项目“固体量子计算的器件物理基础”(SQ2013CC021156),参与,2014.1-2019.12

9.国家自然科学基金重点项目(61134008),“量子体系控制理论与实验验证系统”,参与,2012.1-2016.12

10.国家基金委海外及港澳学者合作研究基金项目(61328502),“光力系统的基本量子性质及相干调控研究”,参与,2014.1-2015.12

11.中国博士后科学基金(一等资助),“纳米操作系统量子化及控制研究”,课题负责人 2007.1-2008.7

奖励与荣誉

国际自动控制联合会(IFAC)世界大会青年作者奖(Young Author Award,2011)

国家自然科学基金优秀青年科学基金(2016)

清华大学优秀博士论文(二等)

清华大学自动化系学术新秀

学术成果

期刊论文
[1] J. Zhang, Y.-X. Liu, R.-B. Wu, K. Jacobs, and F. Nori, Quantum feedback: theory, experiments, and applications, accepted by Physics Reports.

[2] Z. P. Liu, J. Zhang* (co-first author), S. K. ?zdemir, B. Peng, H. Jing, X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, and Y.-X. Liu, Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition, Phys. Rev. Lett. 117, 110802 (2016).

[3] F. Monifi, J. Zhang*(co-first auther), ?. K. ?zdemir*, B. Peng, Y.-X. Liu, F. Bo, F. Nori and L. Yang*, Optomechanically-induced stochastic resonance and chaos transfer between optical fields, Nature Photonics 10, 399-405 (2016).

[4] J. Zhang*, B. Peng, S. K. Ozdemir, Y.-X. Liu, H. Jing, X.-Y. Lü, Y.-L. Liu, L. Yang, and F. Nori, Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes, Phys. Rev. B 92, 115407 (2015).

[5] N. Yang, J. Zhang*, H. Wang, Y.-X. Liu, R.-B. Wu, L.-Q. Liu, C.-W. Li, and F. Nori, Noise suppression of on-chip mechanical resonators by chaotic coherent feedback, Phys. Rev. A 92, 033812 (2015).

[6] C.-L. Zhu, N. Yang, Y.-X. Liu, F. Nori, and J. Zhang*, Entanglement distribution over quantum code-division multiple-access networks, Phys. Rev. A 92, 042327 (2015).

[7] Y. L. Liu, Z. P. Liu and J. Zhang, Coherent-feedback-induced controllable optical bistability and photon blockade, J. Phys. B: At. Mol. Opt. Phys. 10, 105501 (2015).

[8] H. Jing, S. K. Ozdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, Optomechanically-induced transparency in partiy-time-symmetric microresonators, Sci. Rep. 5, 9663 (2015).

[9] X.-Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, Squeezed optomechanics with phase-matched amplification and dissipation, Phys. Rev. Lett. 114, 093602 (2015).

[10] H. Wang, Z. X. Wang, J. Zhang, ?. K. ?zdemir, L. Yang, and Y.-X. Liu, Phonon amplification in two coupled cavities containing one mechanical resonator, Phys. Rev. A 90, 053814 (2014).

[11] H. Jing, S.?K. ?zdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori, PT-Symmetric Phonon Laser, Phys. Rev. Lett. 113, 053604 (2014).

[12] J. Zhang*, Y.-X. Liu, S. K. Ozdemir, R. B. Wu, F. F. Gao, X. B. Wang, L. Yang and F. Nori. Quantum internet using code division multiple access. Sci. Rep. 3, 2211 (2013) (Nature series journal).

[13] J. Zhang*, Y.-X. Liu, R. B. Wu, K. Jacobs, and F. Nori. Non-Markovian quantum input-output networks. Physical Review A 87, 032117 (2013).

[14] Z.-P. Liu, H. Wang, J. Zhang*, Y.-X. Liu, R.-B. Wu, C.-W. Li, and F. Nori. Feedback-induced nonlinearity and superconducting on-chip quantum optics. Physical Review A 88, 063851 (2013).

[15] X.-W. Xu, H. Wang, J. Zhang, and Y.-X. Liu. Engineering of nonclassical motional states in optomechanical systems. Physical Review A 88, 063819 (2013).

[16] R. B. Wu, T. F. Li, A. G. Kofman, J. Zhang, Yu-xi Liu, Yu. A. Pashkin, J.-S. Tsai, and Franco Nori. Spectral analysis and identification of noises in quantum systems. Physical Review A, 87: 022324 (2013).

[17] J. Zhang*, R. B. Wu, Y.-X. Liu, C. W. Li, and T. J. Tarn. Quantum coherent nonlinear feedbacks with applications to quantum optics on chip. IEEE Transaction on Automatic Control, 57: 1997 (2012) (Regular paper).

[18] J. Zhang*, R. B. Wu, L. Miao, Lei, N. Xi, C. W. Li, Y. C. Wang, and T. J. Tarn. Suppressing nano-scale stick-slip motion by feedback. J. Appl. Phys. 111: 054308 (2012).

[19] S.-B. Xue, R.-B. Wu, W.-M. Zhang, J. Zhang and T.-J. Tarn. Coherent feedback control of non-Markovian open Boson systems via engineered quantum fields. Physical Review A, 86: 052304 (2012).

[20] H. Wang, H. C. Sun, J. Zhang, and Y.-X. Liu. Transparency and amplification in a hybrid system of the mechanical resonator and circuit QED. SCIENCE CHINA-Physics, Mechanics & Astronomy, 55: 2264 (2012).

[21] R. B. Wu, J. Zhang, C. W. Li, G. L. Long, and T. J. Tarn. Control problems in quantum systems. Chinese Science Bulletin, 57: 2194 (2012).

[22] J. Zhang*, Y.-X. Liu, W. M. Zhang, L. A. Wu, R. B. Wu, and T. J. Tarn. Determinstic chaos can act as a decoherence suppressor. Physical. Review B, 84: 214304 (2011).

[23] S. B. Xue, J. Zhang*, R. B. Wu, C. W. Li, and T.-J. Tarn. Quantum operation for a one-qubit system under a non-Markovian environment. Journal of Physics B: Atomic Molecular and Optical Physics, 44: 154016 (2011).

[24] J. Zhang*, R.-B. Wu, C.-W. Li T.-J. Tarn. Protecting coherence and entanglement by quantum feedback controls. IEEE Transactions on Automation Control, 55: 619-633 (2010) (Regular Paper).

[25] J. Zhang*, Y.-X. Liu, R.-B. Wu, C. W. Li, and T. J. Tarn. Transition from weak to strong measurements by nonlinear quantum feedback control. Physical. Review A, 82: 022101 (2010).

[26] J. Zhang*, Y. X. Liu, and F. Nori, Cooling and squeezing the fluctuations of a nanomechanical beam by indirect quantum feedback control, Physical Review A, 79: 052102 (2009). (quant-ph/ 0902.2526)

[27] J. Zhang*, Y. X. Liu, C. W. Li, T. J. Tarn, and F. Nori. Generating stationary entangled states in superconducting qubits. Physical Review A 79: 052308 (2009). (quant-ph/0808.0395)

[28] J. Zhang*, R. B. Wu, C. W. Li, and T. J. Tarn. Using a squeezed field to protect two-atom entanglement against spontaneous emissions. Journal of Physics A: Mathematical and Theoretical, 42: 035304 (2009). (quant-ph/0807.0965)

[29] J. Zhang*, C. W. Li, T. J. Tarn, J. W. Wu, Analytically solvable two-qubit entanglement monotone, Physical Review A, 76: 032306 (2007).

[30] J. Zhang*, R. B. Wu, C. W. Li, T. J. Tarn, and J. W. Wu. Asymptotically noise decoupling for Markovian open quantum systems, Physical Review A, 75: 022324 (2007). (quant-ph/0701175)

[31] J. W. Wu, C. W. Li, T. J. Tarn, and J. Zhang. Optimal BangBang control for SU(1,1) Coherent States. Physical. Review A, 76: 053403 (2007).

[32] J. Zhang*, C.W. Li, R.B. Wu, T.J. Tarn, J.W. Wu. Quasi multipartite entanglement measure based on quadratic functions, Physical Review A, 73: 022319 (2006). (quant-ph/0512256)

[33] J. Zhang*, C.W. Li. Decoherence suppression of two-level quantum systems based on coherent control, Control and Decision, 21: 508-512 (2006). (in Chinese)

[34] J. W. Wu, C. W. Li, R. B. Wu, T. J. Tarn, and J. Zhang. Quantum control by decomposition of SU(1,1), Journal of Physics A: Mathematical and General, 39: 13531-13551 (2006).

[35] J. Zhang*, C.W. Li, R.B. Wu, T.J. Tarn, X. S. Liu, Maximal suppression of decoherence in Markovian quantum systems, Journal of Physics A: Mathematical and General, 38: 6587-6601 (2005).

[36] X.S. Liu, R.B. Wu, Y. Liu, J. Zhang and G.L. Long. Dynamical control of adiabatic decoherence in the single three-level atom, Journal of Optics B: Quantum and Semiclassical Optics, 7: 268-293 (2005).

[37] J. Zhang*, C.W. Li, R.B. Wu, Coherent control modeling of quantum computers in open environment, ACTA AUTOMATICA SINICA, 31: 759-764 (2005). (in Chinese)

[38]  J. Zhang*, C.W. Li, R.B. Wu, Output feedback control of quantum mechanical systems, Control and Decision, 20: 607-610, 615 (2005). (in Chinese)


会议论文
[1] H. Sun, J. Zhang*, R.-B. Wu, H. Rabitz, T.-J. Tarn. Optimal control protocols can be exponentially accelerated by quantum algorithms. IEEE Conference on Decision and Control, 2016.

[2] N. Yang, J. Zhang, Z. P. Liu, C. W. Li, and T. J. Tarn. Cooling of optomechanical system by coherent feedback. Proceeding of the 11th World Congress on Intelligent Control and Automation (WCICA), pp. 2103-2107, Shenyang, China, 29 June-4 July 2014.

[3] R. B. Wu, J. Zhang, Y. X. Liu, C. W. Li, and T. J. Tarn. Control of quantum mechanical systems - Recent works in Tsinghua University. Proceeding of the 11th World Congress on Intelligent Control and Automation (WCICA), pp. 1310-1317, Shenyang, China, 29 June-4 July 2014.

[4] W. B. Dong, R. B. Wu, J. Zhang, C. W. Li, and T. J. Tarn. Quantum control model for spatial propagation of. electromagnetic fields in dielectrics. IEEE Conference on Decision and Control, 2013.

[5] R.-B. Wu, J. Zhang, C. W. Li and T.-J. Tarn. Frequency-domain model of quantum control systems. IEEE Conference on Decision and Control, 2012.

[6] J. Zhang, R. B. Wu, C. W. Li, and T. J. Tarn. Quantum chaotic communication. 10th World Congress on Intelligent Control and Automation, pp. 1854, 2012.

[7] S. B. Xue, R. B. Wu, and J. Zhang. Coherent quantum feedback rejection of non-Markovian noises. 10th World Congress on Intelligent Control and Automation, pp. 2209, 2012.

[8] J. Zhang and R. B. Wu. Coherent nonlinear quantum feedback with applications to on-chip quantum optics. 18th IFAC World Congress, Milan, 2011.

[9] J. Zhang and R. B. Wu, Using chaotic device to suppress non-Markovian quantum noises, Proceedings of the 30th Chinese Control Conference, 2011, pp. 5346-5351, Yantai, China.

[10] S. B. Xue, J. Zhang, R. B. Wu, C. W. Li, and T. J. Tarn, Quantum operation for one non-Markovian qubit via AC control, Proceedings of the 30th Chinese Control Conference, 2011, pp. 5352-5357, Yantai, China.

[11] J. Zhang, L. Miao, R. B. Wu, N. Xi, C. W. Li, Y. C. Wang, and T. J. Tarn. Reducing stick-slip motion in one-dimensional nano manipulation by real-time feedback control. IEEE NANO 2010 Joint Symposium with NANO Korea, 2010/8/24.

[12] J. Zhang, R. B. Wu, Y. X. Liu, C. W. Li, and T. J. Tarn. Quantum-feedback-control induced bifurcation and its application to qubit readout. 48th Control and Decision Conference (CDC), Shanghai China, 2009.

[13] J. Zhang, R. B. Wu, C. W. Li, and T. J. Tarn. Bath-induced Control of Two-qubit Entanglement under Markovian Noises. 47th Control and Decision Conference (CDC), Cancun Mexico, 2008.

[14] J. W. Wu, C. W. Li, J. Zhang, Energy optimal control for SU(1,1)-type two-input quantum systems, Proceedings of the 26th Chinese Control Conference, Zhangjiajie, China, 2007.

[15] J. Zhang, C. W. Li, Noise decoupling decoherence suppression strategy for Markovian open quantum systems, Proceedings of the 25th Chinese Control Conference, Harbin, China, 2006.